domingo, 13 de setembro de 2020

 




 UM SISTEMA COM INFINITAS PARTÍCULAS, INFINITAS E ÍNFIMAS INTERAÇÕES, TRANSFORMAÇÕES, FENÔMENOS DENTRO DAS FÍSICAS QUÂNTICA, CLÁSSICA, QUÍMICA, E BIOLOGIA MOLECULAR NÃO SE TEM COMO DETERMINAR A VELOCIDADE E INTENSIDADE DE FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, E OUTROS, EM DETERMINADO MOMENTO [TEMPO], E ESPAÇO.



E CONFORME O SDCITE GRACELI.





ESTADOS DE ENERGIAS  QUÂNTICO DE GRACELI.

se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.


ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.

e o mesmo acorre sobre materiais diferenciados.

ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
X


TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]


x

toda forma de equação e função em:

Numa teoria quântica de campos, a regularização de divergências e a renormalização são geralmente vistas apenas como técnicas para tornar funções de correlações finitas. Contudo, elas possuem um significado físico muito profundo e mais importante: a descrição de teorias quânticas de campos mudam conforme a escala de energia. Essa ideia foi introduzida por Kenneth Wilson[1] e é quantificada pelas equações do grupo de renormalização.

Grupo de renormalização no espaço de momentos[editar | editar código-fonte]

Suponha uma teoria quântica de campos com campos  e constantes de acoplamento  descrita pela ação clássica . Vamos considerar a expansão em modos de Fourier de 


x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Usualmente, a integral é sobre todas as frequências . Neste caso, várias funções de correlação podem não ser bem definidas. Uma forma de regularizar a teoria é introduzir uma frequência de corte ultravioleta . Isto é, limitamos a integral ao disco

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Chamaremos esse campos de  e diremos que ele é o campo na escala . Então

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Também chamaremos a constante de acoplamento de . A função partição sobre os campos  é

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Já que alguns dos modos de Fourier estão faltando, o campo  é praticamente constante em distâncias menores que . Então, introduzir uma frequência de corte ultravioleta é o mesmo que introduzir um corte em pequenas distâncias. É óbvio que a introdução desse limite quebra a simetria de Poincaré. Eventualmente, vamos tomar o limite do contínuo , onde a simetria de Poincaré é recuperada. A questão de renormalizabilidade é se podemos fazer isso mantendo as quantidades físicas numa escala de energia finita  regulares.[2]

Vamos decompor a região de integração da expansão em modos em duas partes:

 e 
x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Chamaremos as expansões em modos correspondentes por

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde B e A referem-se a Baixas e Altas energias. Nós gostaríamos de estudar o comportamento da teoria em energias menores que , por exemplo, amplitudes de espalhamento de partículas com momentos . O que procuramos então é uma ação que descreva esses efeitos somente em termos de . Ela pode ser obtida integrando sobre  na integral de trajetória, mantendo  variável

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Isso é chamado teoria de campos efetiva na energia . Por vezes, quando tomamos o limite para o contínuo , a expressão para a ação fica divergente e isso é a indicação que precisamos mudar a descrição da teoria em baixas energias. Nos casos mais drásticos, precisamos encontrar um novo conjunto completamente novo de campos e simetrias para descrever a teoria. Contudo, em muitos casos, a mudança de variáveis e parâmetros têm a forma:

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Aqui,  e  são os novos campos, em termos dos quais a ação efetiva

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


é regular no limite para o contínuo. Os campos  e as contantes  na escala de corte  são chamados de campos nus e constantes de acoplamentos nuas, enquanto  e  são ditas renormalizados.

Equação de Callan-Symanzik[editar | editar código-fonte]

Se pode olhar para essa mudança de campos e constantes de duas formas. Uma forma de ver é fixar  e variar . Nós fixamos os campos  e constantes de acoplamento  numa escala  (com os valores medidos nessa escala) e mudamos os campos nus  e as contantes nuas . Se pudermos mover  para o infinito sem mudar o comportamento do sistema na energia  (descrito por  e ), então, nesse limite, obtemos uma teoria quântica de campos com simetria de Poincaré.

Uma outra forma de ver é mover , fixando  e consequentemente  e . Desta forma, o campo renormalizado e a constante de acoplamento renormalizada é que mudam com a escala. Essa constante é dita constante de acoplamento corredora. Em particular, se mudamos a escala de  para , as constantes de acoplamento mudarão de  para , onde  

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


é a inversa da função definida anteriormente. Com efeito, definindo um campo com contribuições dos modos de Fourier entre , podemos repetir o raciocínio e escrever . Desta forma, uma mudança de escala induz uma mudança das contantes de acoplamento através do campo vetorial

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Essa equação é chamada de equação de Callan-Symanzik[3] e o campo vetorial  é chamado função beta da constante de acoplamento .







Max Planck obteve a forma correta da distribuição porque postulou a quantização da energia dos osciladores harmônicos que comporiam as paredes da cavidade que confina a radiação. Essa hipótese teve por efeito introduzir um limite máximo de freqüência acima do qual há um corte (cutoff) nas contribuições dos entes (ondas eletromagnéticas) que estão em equilíbrio.

Einstein, para explicar o efeito fotoelétrico, ampliou o conceito da quantização para a energia radiante, postulando a existência do fóton (o que "implicitamente" quer dizer que as equações de Maxwell não tem validade ilimitada, porque a existência do fóton implica não-linearidades).

A antiga teoria quântica cedeu lugar à mecânica quântica moderna quando Schrödinger desenvolveu a famosa equação que leva o seu nome. Entretanto, a primeira versão que ele desenvolveu foi a equação que hoje é conhecida como equação de Klein-Gordon, que é uma equação relativista, mas que não descrevia bem o átomo de hidrogênio, por razões que só mais tarde puderam ser entendidas. Assim, ele abandonou a primeira tentativa, chegando à sua equação (equação de Schrödinger):

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


A equação de Schrödinger acima colocada é a equação "dependente do tempo", pois o tempo aparece explicitamente. Neste caso, as soluções  são funções das coordenadas espaciais e do tempo.

Quando o potencial  não depende do tempo, ou seja, quando o campo de força ao qual a partícula está submetida é conservativo, é possível separar as variáveis  e .

A equação que a parte espacial da função de onda  obedece é:

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS




conhecida como equação de Schrödinger "independente do tempo". Esta é uma equação de autovalores, ou seja, através dela se obtêm simultaneamente autofunções (no caso as funções de onda ) e autovalores (no caso, o conjunto das energias estacionárias ).

Formulação matemática[editar | editar código-fonte]

Mecânica clássica e mecânica quântica[editar | editar código-fonte]

A dinâmica de uma partícula pontual de massa  em um regime não-relativístico, ou seja, em velocidades muito menores que a velocidade da luz, pode ser determinada através da função lagrangiana[6][7] 

,

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


em que  (que são respectivamente coordenadas generalizadas para a posição e a velocidade da partícula) determinam o espaço de fase do sistema e  é o potencial em que a partícula se move. Minimizando o funcional ação



x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


encontra-se a equação de movimento para esse sistema,

,

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


que é a equação de Newton, desde que 

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Existe outra formulação equivalente da mecânica clássica, conhecida como formulação hamiltoniana e que pode ser diretamente relacionada a formulação lagrangiana acima. Para se fazer contato entre as duas formulações, define-se o momento  

,

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


de maneira que a função hamiltoniana é dada por

,

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


que para a escolha da lagrangiana acima, tem-se

.

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Assim como no caso da função lagrangiana, a hamiltoniana descreve toda a dinâmica de um sistema clássico, portanto, considerando uma variação de  tem-se um par de equações diferenciais de primeira ordem conhecidas como equações de Hamilton 

,

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


e que equivale a equação de Newton, que é de segunda ordem. No formalismo hamiltoniano, usando a regra da cadeia, pode-se escrever qualquer variação temporal de uma função , em termos das equações de Hamilton acima, de modo que,




x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde o parêntese de Poisson é definido como

.

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Existem diversas maneiras de realizar a quantização de um sistema clássico, tais como quantização por integrais funcionais e quantização canônica. Esse último método em particular, consiste na substituição do parêntese de Poisson por comutadores[8]

,

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde , são operadores num espaço de Hilbert. Com essas substituições, o parêntese de Poisson entre duas coordenadas generalizadas torna-se

.

Um aspecto importante a ser observado é que os operadores  e  podem ser representados como os operadores diferencias



x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


de maneira que a função hamiltoniana, torna-se um operador no espaço de Hilbert, chamado operador hamiltoniano que atua em uma função 

,

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


que é a equação de Schrödinger.

Teoria Clássica de Campos[editar | editar código-fonte]

A formulação lagrangiana e a hamiltoniana da mecânica clássica são refinamentos da mecânica newtoniana e permite o tratamento de sistemas com um número finito de graus de liberdade. Considerando um sistema mecânico unidimensional com  graus de liberdade, que consiste de  partículas pontuais de massa , separadas por uma distância  e conectadas entre si por uma mola de constante elástica . A lagrangiana para esse sistema é:

.

Esse sistema pode ser estendido facilmente para o limite em que  e . No entanto, se o comprimento total do sistema estiver fixo, tem-se o limite contínuo , de modo que a lagrangiana terá a forma

,

onde  representa o deslocamento da partícula relativa a posição  no instante de tempo . Também, define-se as quantidades  .

Generalizando essa discussão prévia para um sistema relativístico, tem-se uma lagrangiana que será uma função do campo , em que  e das derivadas , dessa maneira, o funcional ação pode ser escrito como

.

Finalmente, a lagrangiana pode ser escrita como

,

onde , é conhecida como densidade lagrangiana.[9] A equação de Euler-Lagrange é:

.

Primeiras unificações. Equações relativísticas[editar | editar código-fonte]


Equação de Klein-Gordon[editar | editar código-fonte]

Como foi dito acima, quando Schrödinger primeiro procurou uma equação que regesse os sistemas quânticos, pautou sua busca admitindo uma aproximação relativista, encontrando a depois redescoberta equação de Klein-Gordon:

onde

A equação de Klein-Gordon, às vezes chamada de equação de Klein-Fock-Gordon (ou ainda Klein-Gordon-Fock) pode ser deduzida de algumas maneiras diferentes.

Usando-se a definição relativística de energia

chega-se à equação:

Essa expressão, por conter operadores diferenciais sob o radical, além de apresentar dificuldades computacionais, também apresenta dificuldades conceituais, já que se torna uma teoria não-local (pelo fato de a raiz poder ser expressa como uma série infinita). Por ser uma equação de segunda ordem não permite que fique bem definida a questão da normalização da função de onda.

Fock deduziu-a através da generalização da equação de Schrödinger para campos magnéticos (onde as forças dependem da velocidade). Fock e Klein usaram ambos o método de Kaluza-Klein para deduzi-la. O motivo, só mais tarde entendido, da inadequação desta equação ao átomo de hidrogênio é que ela se aplica bem somente a partículas sem carga e de spin nulo.

Equação de Dirac[editar | editar código-fonte]

Em 1928 Paul Dirac obteve uma equação relativística baseada em dois princípios básicos

  1. A equação deveria ser linear na derivada temporal;
  2. A equação deveria ser relativisticamente covariante.

A equação obtida por ele tinha a seguinte forma:

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde  e  não são números reais ou complexos, mas sim matrizes quadradas com N² componentes. Semelhantemente, as funções  são na verdade matrizes coluna da forma

e as matrizes  e  devem ser hermitianas.

A equação de Dirac, diferentemente da equação de Klein-Gordon, é uma equação que dá bons resultados para partículas de spin ½. Aliás, um dos sucessos é que esta equação incorpora o spin de forma natural, o que não ocorre com a equação de Schrondinger, onde o spin é admitido posteriormente como uma hipótese ad hoc. Não obstante, isso levou certos autores a afirmarem que o spin é um grau de liberdade relativístico, o que é contestado. Outro sucesso da equação de Dirac foi prever a existência do pósitron, já que a equação previa valores negativos de energia, o que foi inicialmente interpretado, à luz da [[teoria dos buracos], como indicação de elétrons com energias negativas. Essa teoria afirmava que os pósitrons seriam vacâncias produzidas pela promoção desses elétrons para estados com energias positivas. O vácuo é então visto como um mar de elétrons onde eles estariam compactamente colocados. Hoje, entretanto, essa teoria cedeu lugar à questão de criação e aniquilação de partículas num contexto mais geral da quantização canônica dos campos.







renormalização é um conjunto de técnicas utilizadas para eliminar os infinitos que aparecem em alguns cálculos em Teoria Quântica de Campos.[1] Na mecânica estatística dos campos[2] e na teoria de estruturas geométricas auto-similares,[3] a renormalização é usada para lidar com os infinitos que surgem nas quantidades calculadas, alterando valores dessas quantidades para compensar os efeitos das suas auto-interações. Inicialmente vista como um procedimento suspeito e provisório por alguns de seus criadores, a renormalização, eventualmente, foi abraçada como uma ferramenta importante e auto-consistente em vários campos da física e da matemática. A renormalização é distinta da outra técnica para controlar os infinitos, regularização, que assume a existência de uma nova física desconhecida em novas escalas.[4]


Renormalização em EDQ[editar | editar código-fonte]

Em Lagrangeano de EDQ,

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Os campos e a constante de acoplamento são realmente quantidades "cruas", por isso, o índice B acima. Convencionalmente, as quantidades cruas são escritas de modo que os termos lagrangianos correspondentes sejam múltiplos dos renormalizados:

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Teoria de gauge e Identidade de Ward-Takahashi[5][6] implicam que podemos renormalizar os dois termos da parte derivada covariante  juntos[7], que é o que aconteceu para Z2, é o mesmo com Z1.[8]








Saltar para a navegaçãoSaltar para a pesquisa

Uma estatística quantica, no contexto da mecânica quântica e no da mecânica estatística, é a descrição de como a energia de cada um dos entes unitários constituintes de um ensemble está distribuida, dada uma energia total E constante, sob a restrição de que:

  1. a energia passa a ser quantizada;
  2. as partículas objeto de estudo passam a ser indistinguíveis.

Isso é feito expressando-se as probabilidades relativas de uma partícula com energia 

De modo clássico, a probabilidade é dada por:

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


é a chamada função de partição

Nos casos quanticos, o que muda é a questão da quantização do espaço de fase, o que impõe um "volume" mínimo de célula possível nesse espaço.






mecânica estatística (ou física estatística) é o ramo da física que, utilizando a teoria das probabilidades, estuda o comportamento de sistemas mecânicos macroscópicos compostos por um elevado número de entidades constituintes microscópicas a partir do comportamento destas entidades, quando seus estados são incertos ou indefinidos. Os constituintes podem ser átomosmoléculasíons, entre outros. É uma teoria que relaciona um nível de descrição macroscópico (Termodinâmica) com um nível microscópico (Mecânica).[1][2][3]

O estudo de todos os microestados destes sistemas em toda a sua complexidade é pouco prático ou mesmo inviável. Para contornar essa dificuldade, a mecânica estatística usa um conjunto de cálculos probabilísticos para a ocorrência dos diferentes microestados e atribuir uma série de vínculos matemáticos, como a hipótese de ergodicidade.

A mecânica estatística é usada para explicar, por exemplo, o funcionamento termodinâmico de grandes sistemas, sendo chamada então de termodinâmica estatística ou mecânica estatística de equilíbrio. Leis mecânicas microscópicas não contêm conceitos tais como a temperatura, o calor, ou a entropia. No entanto, a mecânica estatística mostra como esses conceitos surgem da incerteza natural sobre o estado de um sistema quando esse sistema é preparado na prática. A vantagem de usar a mecânica estatística é que ela fornece métodos exatos para relacionar grandezas termodinâmicas (tais como a capacidade térmica) para comportamento microscópico, enquanto que na termodinâmica clássica a única opção disponível seria apenas medir e tabular tais quantidades para vários materiais. A mecânica estatística também torna possível estender as leis da termodinâmica para casos que não são considerados na termodinâmica clássica, tais como sistemas microscópicos e outros sistemas mecânicos com poucos Graus de liberdade.[1]

A mecânica estatística também encontra uso fora do equilíbrio. Outra importante divisão é conhecida como mecânica estatística do não-equilíbrio, que lida com a questão de modelar microscopicamente a velocidade de processos irreversíveis que são movidos por desequilíbrios. Exemplos de tais processos incluem reações químicas ou fluxos de partículas e de calor. Ao contrário de com o equilíbrio, não há formalismo exato que se aplique a mecânica estatística do não-equilíbrio em geral, e por isso este ramo da mecânica estatística continua a ser uma área ativa de pesquisa teórica.


Histórico[editar | editar código-fonte]

Em 1738, o físico e matemático suíço Daniel Bernoulli publica seu livro Hydrodynamica, que lançou as bases para a teoria cinética dos gases. Neste trabalho, Bernoulli postulou o argumento, ainda em uso hoje em dia, que os gases consistem de um grande número de moléculas que se movem em todas as direções, que o impacto delas sobre uma superfície causa a pressão e que a temperatura do gás está relacionada à energia cinética dessas moléculas.[4]

Em 1859, depois de ler um artigo de Rudolf Clausius sobre a difusão de moléculas, o físico escocês James Clerk Maxwell formulou a distribuição de Maxwell de velocidades moleculares. Esta foi a primeira lei estatística em física.[5] Cinco anos mais tarde, em 1864, Ludwig Boltzmann, então um jovem estudante em Viena, conhece a pesquisa de Maxwell e passa grande parte de sua vida desenvolvendo o assunto ainda mais.

A mecânica estatística foi iniciada na década de 1870 com os trabalhos de Boltzmann, com grande parte dele sendo publicado em 1896, na obra “Palestras sobre Teoria dos Gases”.[6] Os artigos originais de Boltzmann sobre a interpretação estatística da termodinâmica, o teorema H, teoria de transporte, o equilíbrio térmico, a equação de estado de gases e assuntos semelhantes, ocupam cerca de 2 000 páginas no acervo da Academia de Viena e outras sociedades. Boltzmann introduziu o conceito de um conjunto canônico estatístico de equilíbrio e também pesquisou pela primeira vez a mecânica estatística do não-equilíbrio, com seu teorema H.

Pode-se dizer que a mecânica estatística nasceu dos trabalhos de Maxwell e Boltzmann. Dos estudos sobre as partículas constituintes dos gases (átomos e moléculas) e dos níveis de energia resultou uma grande quantidade de informações sobre as grandezas macroscópicas baseadas somente nas grandezas microscópicas médias.

O termo "mecânica estatística" foi cunhado pelo físico matemático americano J. Willard Gibbs em 1884.[7] Pouco antes de sua morte, Gibbs publica em 1902 seu livro “Princípios Elementares em Mecânica Estatística”, formalizando a mecânica estatística como uma abordagem geral para atender todos os sistemas mecânicos - macroscópicas e microscópicas, gasosos ou não-gasosos.[1] Os métodos de Gibbs foram inicialmente derivados no quadro da mecânica clássica, no entanto, eles foram de tal generalidade que se adaptaram facilmente à mecânica quântica e ainda hoje formam a base da mecânica estatística.[2]

Princípios[editar | editar código-fonte]

Na física, existem dois tipos de mecânica normalmente examinados: a mecânica clássica e mecânica quântica. Para ambos os tipos de mecânica, a abordagem matemática padrão é considerar dois ingredientes:

  1. O estado completo do sistema mecânico em um determinado momento, matematicamente codificada como um ponto de fase (mecânica clássica) ou um vetor de estado quântico puro (mecânica quântica).
  2. Uma equação de movimento que leva o estado a frente no tempo: equações de Hamilton (mecânica clássica) ou a equação de Schrödinger dependente do tempo (mecânica quântica)

Usando estes dois ingredientes, o estado em qualquer outro momento, passado ou futuro, pode, em princípio, ser calculado. Há, porém, uma desconexão entre essas leis e a experiência prática, não sendo necessário, nem teoricamente possível, saber com exatidão a um nível microscópico a posição e a velocidade de cada molécula durante a realização de processos na escala humana, por exemplo, quando se realiza uma reação química. A mecânica estatística preenche essa desconexão entre as leis da mecânica e da experiência prática do conhecimento incompleto, adicionando alguma incerteza sobre qual estado o sistema está inserido, por meio da probabilidade.

Enquanto a mecânica clássica considera apenas o comportamento de um único estado, a mecânica estatística introduz o conceito de ensemble estatístico, que é uma grande coleção de cópias do sistema, virtuais e independentes, em vários estados. O ensemble estatístico é uma distribuição de probabilidade sobre todos os possíveis estados do sistema. Na mecânica estatística clássica, o ensemble é uma distribuição de probabilidade sobre pontos de fases (em oposição a um único ponto de fase na mecânica tradicional), normalmente representado como uma distribuição num espaço de fase com coordenadas canônicas. Em mecânica estatística quântica, o ensemble é uma distribuição de probabilidade sobre estados puros, e pode ser resumido como uma matriz densidade.

O ensemble pode ser interpretado de duas maneiras:[1]

  1. Um ensemble pode ser considerado como a representação dos vários estados possíveis que um único sistema pode estar (probabilidade epistemológica), ou
  2. Os membros do ensemble podem ser entendidos como os estados dos sistemas em experiências repetidas em sistemas independentes, que foram preparados de um modo semelhante, mas imperfeitamente controlado (probabilidade empírica), no limite de um número infinito de ensaios

Estes dois entendimentos são equivalentes para fins diversos, e serão utilizados de maneira intercambiável neste artigo.

Em qualquer modo que a probabilidade é interpretada, cada estado no ensemble evolui ao longo do tempo de acordo com a equação de movimento. Assim, o próprio ensemble (a distribuição de probabilidade sobre estados) também evolui, com os sistemas virtuais do ensemble continuamente deixando um estado e entrando em outro. A evolução do ensemble é dada pela equação de Liouville (mecânica clássica) ou a equação de von Neumann (mecânica quântica). Estas equações são derivadas pela aplicação da equação de movimento mecânico separadamente para cada sistema virtual contido no ensemble, com a probabilidade do sistema virtual ser conservado ao longo do tempo à medida que evolui de estado para estado.

Uma classe especial de ensemble trata daqueles que não evoluem ao longo do tempo. Esses ensembles são conhecidos como ensembles de equilíbrio e a sua condição é conhecida como equilíbrio estatístico. O equilíbrio estatístico ocorre se, para cada estado no ensemble, o ensemble também contém todos os seus estados futuros e passados com probabilidades iguais à probabilidade de estar nesse estado. O estudo dos ensembles de equilíbrio de sistemas isolados é o foco da termodinâmica estatística. A mecânica estatística do não-equilíbrio aborda o caso mais geral de conjuntos que mudam ao longo do tempo, e/ou conjuntos de sistemas não-isolados.

Propriedades[editar | editar código-fonte]

A propriedade central da mecânica estatística é a utilização de métodos estatísticos para a formulação de uma teoria cinética para átomos e moléculas, com o intuito de explicar as propriedades deles em um nível macroscópico da natureza.[8]

Um teorema chave é o valor médio da energia cinética das moléculas de um gás a uma certa temperatura  que é calculado como

 (graus de liberdade).
x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


distribuição de Boltzmann é um resultado muito conhecido na física, que relaciona a Termodinâmica com a Mecânica Estatística.[8] Por exemplo: a distribuição de moléculas na atmosfera - desconsiderando ventos e que se encontra em equilíbrio térmico a uma temperatura 

Supondo que  é o número de moléculas total em um volume  de um gás à pressão  então tem-se que:

 ou  

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


sendo  o número de moléculas por unidade de volume. A temperatura sendo uma constante, a sua pressão será proporcional à sua densidade.

A pressão sobre uma camada  deve ser tal a balancear o peso.

A variação de densidade em função da altitude se dá ao tomar-se uma unidade de área com altura  sua força vertical será a força sobre a área sendo representado por  (pressão).

Em um sistema em equilíbrio, suas forças nas moléculas deverão ser balanceadas ou nulas sendo  a pressão feita na área inferior da camada que deve superar a pressão sobre a área de cima da camada assim balanceando com o peso.

Sendo  a força da gravidade em cada molécula,  é o número total das moléculas em cada área.[8] Com todas essas informações obtém-se a equação diferencial que representa o equilíbrio

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Assim, sendo  e também  constantes , elimina-se  e resta a equação para 

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Tem-se a variação da densidade em função da altura na atmosfera do exemplo:

 sendo  a densidade em relação à 

Densidade de átomos n em função da altura h

O numerador do expoente da equação anterior representa a energia potencial para cada átomo, sendo sua densidade em cada ponto igual a

Sendo que  é a energia potencial de cada átomo.

Supondo que haja diversas forças em atuação nos átomos, sendo elas carregadas e estejam sob forte influência de um campo elétrico ou haja atração entre elas.

Havendo um tipo apenas de molécula, a força em uma porção de gás será a força sobre uma molécula  o número de moléculas nessa mesma porção, sendo que a força age na direção  Semelhante em sua forma do problema da atmosfera, tomando dois planos paralelos no gás apenas separados por uma distância representada por  então a força sobre cada átomo multiplicada pela a densidade  e por  deve ser balanceada pela diferença de pressão, ou seja,

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


sendo  o trabalho feito sobre uma molécula ao transportá-la de  até  seu trabalho é igual à diferença de energia potencial (ao quadrado)  assim,

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Obtém-se da equação de força anterior:

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Resultando em

x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Sendo  a variação de energia do estado final e inicial.

Esta última expressão é tratada como sendo a Lei de Boltzmann e pode ser interpretada da seguinte forma:

A probabilidade de encontrar moléculas em uma dada configuração espacial é tanto menor quanto maior for a energia dessa configuração a uma dada temperatura.

Tal probabilidade diminui exponencialmente com a energia dividida por